Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.
نویسندگان
چکیده
Several studies have demonstrated that motor adaptations to a novel task environment can be transferred between limbs. Such interlimb transfer of motor commands is consistent with the notion of centrally driven strategies that can be generalized across different frames of reference. So far, studies of interlimb transfer of locomotor adaptations have yielded disparate results. Here we sought to determine whether locomotor adaptations in one (trained) leg show transfer to the other (test) leg during a unipedal walking task. We hypothesized that adaptation in the test leg to a velocity-dependent force field previously experienced by the trained leg will be faster, as revealed by faster recovery of kinematic errors and earlier onset of aftereffects. Twenty able-bodied adults walked unipedally in the Lokomat robotic gait orthosis, which applied velocity-dependent resistance to the legs. The amount of resistance was scaled to 10% of each individual's maximum voluntary contraction of the hip flexors. Electromyography and kinematics of the lower limb were recorded. All subjects were right-leg dominant and were tested for transfer of motor adaptations from the right leg to the left leg. Catch trials, consisting of unexpected removal of resistance, were presented after the first step with resistance and after a period of adaptation to test for aftereffects. We found no significant differences in the sizes of the aftereffects between the two legs, except for peak hip flexion during swing, or in the rate at which peak hip flexion adapted during steps against resistance between the two legs. Our results indicate that interlimb transfer of these types of locomotor adaptation is not a robust phenomenon. These findings add to our current understanding of motor adaptations and provide further evidence that generalization of adaptations may be dependent on the movement task.
منابع مشابه
Limited Interlimb Transfer of Locomotor Adaptations to a 1 Velocity - Dependent Force Field during Unipedal Walking 2 3 4
LIMITED INTERLIMB TRANSFER OF LOCOMOTOR ADAPTATIONS TO A 1 VELOCITY-DEPENDENT FORCE FIELD DURING UNIPEDAL WALKING 2 3 4 Adina Houldin; Romeo Chua; Mark Carpenter; Tania Lam 5 6 School of Human Kinetics, University of British Columbia, Vancouver, Canada 7 International Collaboration on Repair Discoveries, Vancouver, Canada 8 9 Running title: Interlimb transfer of locomotor adaptations 10 11 Corr...
متن کاملContribution of feedback and feedforward strategies to locomotor adaptations.
The aim of this study was to examine the strategies used by human subjects to adapt their walking pattern to a velocity-dependent resistance applied against hip and knee movements. Subjects first walked on a treadmill with their lower limbs strapped to an exoskeletal robotic gait orthosis with no resistance against leg motions (null condition). Afterward, a velocity-dependent resistance was app...
متن کاملTo transfer or not to transfer? Kinematics and laterality quotient predict interlimb transfer of motor learning.
Humans can remarkably adapt their motor behavior to novel environmental conditions, yet it remains unclear which factors enable us to transfer what we have learned with one limb to the other. Here we tested the hypothesis that interlimb transfer of sensorimotor adaptation is determined by environmental conditions but also by individual characteristics. We specifically examined the adaptation of...
متن کاملLocomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke.
Human locomotion must be flexible in order to meet varied environmental demands. Alterations to the gait pattern occur on different time scales, ranging from fast, reactive adjustments to slower, more persistent adaptations. A recent study in humans demonstrated that the cerebellum plays a key role in slower walking adaptations in interlimb coordination during split-belt treadmill walking, but ...
متن کاملExploiting Interlimb Arm and Leg Connections for Walking Rehabilitation: A Training Intervention in Stroke
Rhythmic arm and leg (A&L) movements share common elements of neural control. The extent to which A&L cycling training can lead to training adaptations which transfer to improved walking function remains untested. The purpose of this study was to test the efficacy of A&L cycling training as a modality to improve locomotor function after stroke. Nineteen chronic stroke (>six months) participants...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 108 3 شماره
صفحات -
تاریخ انتشار 2012